

排ガス熱回収における管側伝熱 促進体 hiTRANの活用

- •排ガス熱回収によるコストダウン
- •さらに設備コストの削減を目指して
- •(既設、新設にも適用可能な技術)

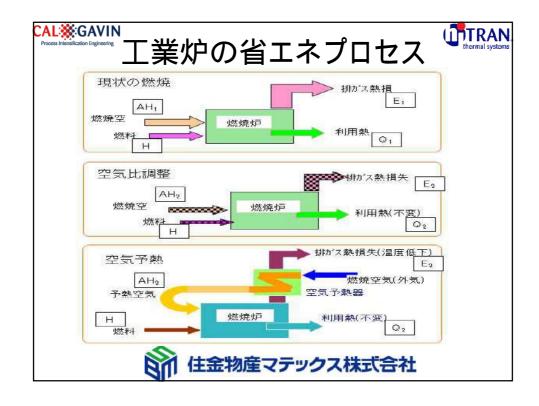
住金物産マテックス株式会社

第1部:hiTRANとは!!

- 1. CalGavin社の紹介
- 2. hiTRANワイヤー素子の形状と流体への作用
- 3. ソフトウエアHTRIとhiTRAN.SPアドイン HTRIソフトとは?http://www.htri.net/

第2部:hiTRAN設計Case Study

工業炉などにおける従来設計とhiTRAN設計の違い



第2部: hiTRAN設計Case Study

- 1. 大型ガスーガス空気予熱器 (Recuperator)へ適用
 - a) 4パス LT25%、50%hiTRAN挿入事例 許容圧損制限下での熱回収率向上
 - b) パス低下と100%hiTRAN挿入による最適化 2パスに改造し、許容圧損内で最大効果を得る
- 2. 小型1Pass ガス ガス空気予熱器の場合 Recuperatorの寸法(Geometry) 許容圧損とhiTRANの密度
- 3. ガス(中温) 熱媒体液(HTO)、熱交換器への適用 hiTRANの密度と許容圧損 最適(小型化)設計事例 エクセルギー効率

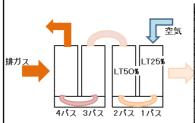
AL GAVIN **INTRAN** Case 1: 大型Gas-Gas空気予熱器 Geometry(寸法) バンドルrows 60/4パス 並列2バンドル Odd/Even 30/30 3/パス 2/パス 1/パス 管タイプ: Plain(炭素鋼) 配列:格子 外径/内径:42.7/36.7mm 列ピッチ:75mm 管有効長:3.0m 行ピッチ:75mm 総本数:1800本 空気4パス/排ガスクロス バンドル幅: 2.237m 伝熱面積:1323m2 バンドル重量:67.732t 熱負荷:7.83MW 排ガス:40000Nm3/h 800 空気: 35500Nm3/h 25 住金物産マテックス株式合社

Case1 補足説明

ケース1は排ガス量4万4千ノルマルリュウベイパーアワーの既設の空気予熱器の場合です。直径43mmで3メートルの管が1800本使用され、管側空気は排ガスとクロスに、60列を4パスで流れます。空気に与えられる熱量は7.8MW、バンドル幅は2.3m、で、重量68トンのバンドルが2つ並列に並びます。

25 の空気は右側から入り、最初のパスから順次2,3、4パスを経て、温められます。既存の4パスレキュペレイターにhiTRANを100%挿入することは、圧力損失が大きく成りすぎるので、現実的でありません。そこで低温側の1パス目のみに挿入する場合(LT25%)と1+2パスの両方に入れる場合(LT50%)の2つについて、現状のPlain管の場合とを比較計算しました。また許容される圧力損失も5kPaと10kPaの2段階で実施しました。これは挿入するhiTRAN素子の密度を変化させることを意味してます。

低温側に入れたのは、hiTRANは高粘度流体の場合に効果的なためで、予備的な計算では、高温側(HT25%,HT50%)は低温側より1 程度熱回収が悪くなるようです。以上のような条件で熱交換機の設計・評定のソフトウエアであるHTRIを用いて計算しました。



Case 1-a): 大型Gas-Gas空気予熱器

既存設備の性能向上:a)管側低温側の1/4と1/2にhiTRANを挿入 許容圧損を10kPaと5kPaでhiTRAN素子を選定

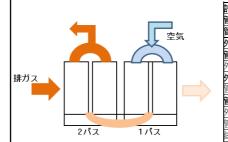
表1hiTRAN挿入による既存設備の性能改善

許容圧損(kPa)	-	10	5	10	5
管パス数	4パス	4パス	4パス	4パス	4パス
管挿入体	無し	LT25%	LT25%	LT50%	LT50%
外側出口温度()	343.0	320.3	321.2	305.4	314.3
管側出口温度()	607.4	633.6	632.5	650.6	640.4
外側圧力損失(kPa)	0.128	0.131	0.130	0.130	0.130
外側流速(m/s)	6.7	6.9	6.9	7.0	6.9
管側圧力損失(kPa)	2.27	9.96	5.08	10.29	5.79
管側流速(m/s)	13.0	14.7	14.3	15.5	14.7
外側境膜係数(W.m2-K)	59.0	58.2	58.3	57.8	58.2
管側境膜係数(W.m2-K)	51.0	73.2	70.7	98.7	79.1
総括伝熱係数(W.m2-K)	24.5	29.4	28.9	33.3	30.4
伝熱量(メガワット)	7.83	8.20	8.18	8.44	8.30
(hiTRAN素子の密度)		最高密度	中密度	中密度	最低密度
温度効率(%)	75.1	78.5	78.4	80.7	79.4

住金物産マテックス株式合社

Case 1-a): 大型Gas-Gas空気予熱器 結果のまとめ

- 1. LT25%でもPlainに比べて25 以上の熱回収効果がある。温度効率で言えば3.5%向上となる。
- 2. LT25%ではhiTRAN密度を大き〈(圧損を大き〈)しても 1 しか効果が無い。これは総括伝熱係数の差の小さいためである。(29.4と28.9W/m2-K)
- 3. LT50%の場合にはhiTRANの効果は大き〈、Planに比べて空気出口温度は40 程度も高〈なる。温度効率5%の向上が達成される。
- 4. 同じ圧力損失で25%と50%挿入を比較すると、50%挿 入が熱回収率が高い。



CAL : GAVIN

Case 1-b): 大型Gas-Gas空気予熱器

既存設備のパスを改造:b)全体を2パスに改造し、hiTRANを全てに挿入

	バンドル	攻造で2ハ	「スとした」	場合
許容圧損(kPa)	10	5	5	10
管パス数	4パス	2パス	2パス	2パス
管挿入体	LT50%	LT50%	100%	100%
外側出口温度()	305.4	344.4	304.5	302.6
管側出口温度()	650.6	605.8	651.6	653.9
外側圧力損失(kPa)	0.130	0.133	0.125	0.125
外側流速(m/s)	7.0	7.3	6.7	6.7
管側圧力損失(kPa)	10.29	3.29	5.20	6.86
管側流速(m/s)	15.5	7.8	7.6	7.7
外側境膜係数(W.m2-K)	57.8	58.0	57.6	57.6
管側境膜係数(W.m2-K)	98.7	65.4	157.1	164.0
総括伝熱係数(W.m2-K)	33.3	27.8	38.8	39.3
伝熱量(メガワット)	8.44	7.81	8.45	8.49
(hiTRAN素子の密度)	中密度	最高密度	中密度	最高密度
温度効率(%)	80.7	74.9	80.9	81.1

Case1 b) 補足説明

ケースa)では既存設備を全く改造せずに、ハイトランのみを挿入したが、圧力損失を小さい状態で、熱回収を向上させる案として、4パスを2パスに改造した場合について、HTRI上で検討しました。ダクトなどの改造のための設備改造は必要ですが、低い圧力損失で、高い温度効率の得られることが判りました。

住金物産マテックス株式合社

CAL SGAVIN

Case 1-b): 大型Gas-Gas空気予熱器 (2パスに改造)まとめ

- 1. 2パスのLT50%では、hiTRAN無しとの空気出口温度とほぼ同等で(606)、hiTRANの効果はない。
- 2. 2パスで100%hiTRAN挿入の場合、4パスの圧損の約半分で、空気出口温度650 が達成可能である。
- 3. hiTRAN中密度と高密度の管側出口温度の差は2 程度と小さく、いたづらに密度を上げる必要は無い。
- 4. hiTRANは部分的に挿入する(LT25,LT50%等)よりは、最適パス数に減少して、hiTRANを100%挿入すべきである。

CAL S GAVIN **I**TRAN Case2: 小型Gas-Gas空気予熱器 Geometry (寸法) 排ガス720 Number of tuberows / / [1 20 tubepasses Number of tubes in each odd/even numbered row 7 16 管タイプ: Plain(炭素鋼) 配列:格子 外径/内径:44.5/38.4mm 列ピッチ: 75.5mm 空気1パス/排ガスクロス 管有効長:2.20m 行ピッチ:81mm 総本数:320本 排ガス:14000Nm3/h 720 バンドル幅: 1.196m 伝熱面積:86.67m2 空気: 13000Nm3/h 25 バンドル重量: 15.088t 熱負荷∶1.47MW 住金物産マテックス株式合社

CAL GAVIN Process Intensification Engineering

Case2 補足説明

これは排ガスダクトの途中に取り付ける1パスの小型の空気予熱器です。 バンドル重量にして、ケース1のほぼ1/4の大きさです。

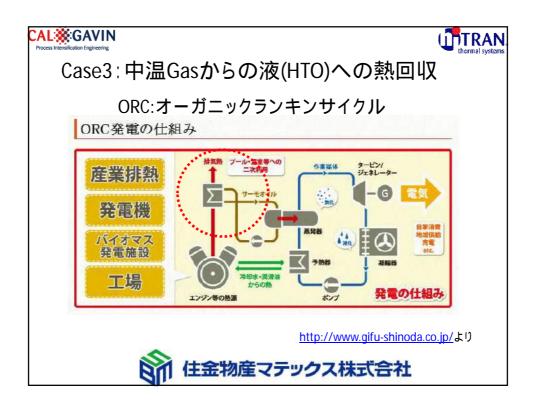
このケースでは外側排ガスの流速がケース1の場合(7m/s)よりもほぼ倍近くの設計となっており、外側境膜伝熱係数も大きいことが期待されます。 また管側のパスは1パスなので、圧力損失も少なくhiTRANの効果が期待されます。

Case2: 小型Gas-Gas空気予熱器

表3小型Gas-Gas空気予熱器(排ガス720)

許容圧損(kPa)	-	-	3	5	10		
管パス数	1パス	2パス	1パス	1パス	1パス		
管挿入体	無し	無し	hiTRAN	hiTRAN	hiTRAN		
外側出口温度()	558.4	496.9	437.3	430.1	433.8		
管側出口温度()	226.8	300.1	369.3	377.5	373.3		
外側圧力損失(kPa)	0.192	0.186	0.178	0.177	0.178		
外側流速(m/s)	13.1	12.8	12.1	12.0	12.1		
管側圧力損失(kPa)	0.81	2.14	3.12	5.21	6.12		
管側流速(m/s)	7.1	18.4	8.7	8.8	8.8		
外側境膜係数(W.m2-K)	88.8	86.4	83.7	83.4	83.5		
管側境膜係数(W.m2-K)	34.5	67.7	183.4	215.9	206.3		
総括伝熱係数(W.m2-K)	22.2	34.7	54.5	57.3	56.5		
伝熱量(メガワット)	0.96	1.32	1.66	1.70	1.68		
(hiTRAN素子の密度)			低密度	中密度	最高密度		
温度効率(%)	29.0	39.6	49.5	50.7	50.1		

住金物産マテックス株式会社



Case2:小型Gas-Gas空気予熱器 まとめ

- 1. Plainの1パスを2パスとしても、空気出口温度は300 と低いが、 外側境膜係数は大きいので、hiTRANの挿入効果は期待できる。
- 2. hiTRANを挿入すると管側境膜係数が改善され、出口温度は Plainの1パスに比べ、150 、2パスと比べても、70 以上出口 温度が改善される。
- 3. hiTRANの密度(許容圧損の増加)による改善効果は小さく、最 高密度を使う必要は無い。
- 4. 温度効率は30~40%から50%にまで、向上する。

Case3:中温Gasからの液(HTO)への熱回収

表4低温Gasからの液(HTO)への熱回収

許容圧力損失(kPa)	(管側は液体なので、成り行き)					伝面減	
管パス数	8パス	8パス	4パス	2パス	1パス	2パス	
管挿入体(hiTRAN)	無し	最高密度	最高密度	最高密度	最高密度	最高密度	
外側出口温度()	164.9	136.4	143.5	154.6	168.8	162.4	
管側出口温度()	219.6	241.8	236.4	227.8	216.6	221.6	
外側圧力損失(kPa)	0.105	0.100	0.102	0.103	0.105	0.078	
外側流速(m/s)	4.3	2.0	4.3	4.3	4.3	4.3	
管側圧力損失(kPa)	16.0	407.8	59.0	12.6	6.2	17.8	
管側流速(m/s)	0.61	0.61	0.31	0.15	0.08	0.21	
外側境膜係数(W.m2-K)	43.4	42.7	42.8	43.0	43.2	43.3	
管側境膜係数(W.m2-K)	659.8	2757.2	1859.9	1263.0	851.2	1493.9	
総括伝熱係数(W.m2-K)	14.3	27.9	24.4	20.6	16.7	22.4	
伝熱量(メガワット)	1.23	1.48	1.42	1.32	1.19	1.25	
伝熱面積(m2)	1215					915	
管本数/列数	224/8					168/6	
バンドル重量(kg)	3091					1920	

住金物産マテックス株式合社

Case3:低温Gasからの液(HTO)への熱回収 まとめ

- 1. 管側液体は圧力損失が大きくとれるので、Plainでは列のフ ルパスとしており、管側境膜伝熱係数はかなり大きい。
- 2. hiTRAN挿入で境膜伝熱係数が8パスで4倍にまで向上し、1 パスでもPlainの8パスと同等であり、管側出口温度も3 低 いのみである。
- 3. hiTRAN改善効果をサイズダウン(伝面減少)設計に用いる と、2パスで同じ伝熱負荷とすると、224本8列を168本6列に 小型化出来、バンドル重量も約2/3に小型化可能。

